If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2-45=5
We move all terms to the left:
d^2-45-(5)=0
We add all the numbers together, and all the variables
d^2-50=0
a = 1; b = 0; c = -50;
Δ = b2-4ac
Δ = 02-4·1·(-50)
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{2}}{2*1}=\frac{0-10\sqrt{2}}{2} =-\frac{10\sqrt{2}}{2} =-5\sqrt{2} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{2}}{2*1}=\frac{0+10\sqrt{2}}{2} =\frac{10\sqrt{2}}{2} =5\sqrt{2} $
| -140=7(-7x-6) | | -3(y-7=36 | | 4^(3x)=26^(x+1) | | 1/3(6x−9)=−12 | | 5.1a=15.3 | | 4x+3.5=4x+4 | | 8/z=27-3 | | -140=7(7x-6) | | 6f+13=–7f–65 | | xx2.7=93.7 | | 3/8=z/20 | | p/8.1=11 | | 8=3x–4 | | 8p+10=-6+2p+4p | | (x-5)=14+2x | | x.2.7=93.7 | | 10-7m=-10-5m | | -2(4a+4)-5a=-35 | | 3(x+2)^2=21 | | -2(4a-4)-5a=-35 | | 3b=b-6 | | –14r=–4r-50 | | 15-2n=3n-5 | | -10+3m=10+8m | | B-10=b+20 | | 40+15+.35x=35+.45x | | 7=4x−2 | | -2(d+1)=32 | | 2{(6×x+x)10}=380 | | 9+6u=7u+3 | | -41=-5-6y | | -5x(7x-9)-6=144 |